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ABSTRACT 

A highly-scalable, Bayesian approach to the problem of performing multi-source data fusion and target 
tracking in decentralized sensor networks is presented.  Previous applications of decentralized data fusion 
have generally been restricted to uni-modal/uni-source sensor networks using Gaussian based approaches, 
such as the Kalman or information filter.  However, with recent interest to employ complex, multi-
modal/multi-source sensors which potentially exhibit observation and/or process non-linearities along with 
non-Gaussian distributions, the need to develop a more generalized and scalable method of decentralized 
data fusion is required.  The probabilistic approach featured in this work provides the ability to seamlessly 
integrate and efficiently fuse multi-source sensor data in the absence of any linearity and/or normality 
constraints.  The proposed architecture is fully decentralized and provides a methodology that scales 
extremely well to any growth in the number of targets or region of coverage.  This paper will illustrate that 
our multi-source data fusion architecture is capable of providing high-precision tracking performance in 
complex, non-linear/non-Gaussian operating environments.  In addition, we will also show that our 
architecture provides an unprecedented scaling capability for decentralized sensor networks as compared to 
similar architectures which communicate information using particle data, Gaussian mixture models or Parzen 
density estimators. 

1.0 INTRODUCTION 

In the field of multi-sensor data fusion, decentralized data fusion has become an attractive alternative to 
centralized data fusion primarily due to the inherent robustness and scalability features that decentralized 
architectures offer.  In its most primitive form, a decentralized sensor network involves processing capability 
at each sensor - eliminating the need and subsequent vulnerability of a central processing node - along with 
the capacity for each sensor to efficiently communicate its information to neighboring sensors without 
requiring any knowledge of the network topology [1]. 
 
To date, the majority of fielded implementations utilizing decentralized data fusion have relied on 
linear/Gaussian assumptions and the Kalman/information filter [2,3,4,5,6].  Even though such systems have 
produced impressive results, the natural desire to utilize a wider mixture of more complex sensor types - 
potentially exhibiting observation and/or process non-linearities along with non-Gaussian distributions - has 
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generated a need for more generalized information fusion techniques.  A variety of methods have been applied 
to the problem of non-linear/non-Gaussian decentralized data fusion in which the majority of such methods 
have been focused on particle filters [7,8], Gaussian mixture models or Parzen density estimators [9,10] or 
some combination of the two [11,12,13].  All of the aforementioned techniques are capable of performing 
generalized estimation, however, not all techniques lend themselves well to decentralized applications as a 
result of the scalability concerns they inherently generate. 
 
This paper presents a highly-scalable, Bayesian approach to the problem of performing generalized, multi-
source data fusion and target tracking in decentralized sensor networks.  A brief background of linear 
decentralized data fusion is first provided in Section 2, and performance results related to currently fielded 
linear decentralized data fusion implementations are provided in Section 31.  Section 4 introduces a proposed 
approach to performing probabilistic decentralized data fusion, and corresponding simulated performance 
results are presented in Section 52.  Section 6 summarizes the paper and provides direction for future efforts. 
 

2.0 LINEAR DECENTRALIZED DATA FUSION 

2.1 Data fusion in sensor networks 
When formulated from a Bayesian standpoint, the data fusion problem is to recursively compute the posterior 
probability density function (PDF) of the state of interest xk at time step k, using the measurement set Zk = {zj, 
j=1,2,...,k}; this can be calculated using Bayes rule 
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where p(zk|xk) is the measurement likelihood and p(xk|Zk-1) is the predicted PDF at time k computed according 
to (2.1.2).  The denominator of (2.1.1) acts as a normalisation factor. 
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When the underlying target distribution and likelihood are assumed to be Gaussian, equations (2.1.1), (2.1.2) 
reduce to the Kalman filter [14] and its Information filter equivalent. 
 
To allow the global state estimate to be computed in a decentralised system – where only communication with 
nearest neighbours is allowed – nodes must communicate their own data and data received from other sensors. 
Care must be taken to prevent nodes receiving data along multiple paths.  If not correctly handled the re-
fusion of information in this way gives rise to the rumour propagation problem which can seriously degrade 
the quality of fusion [15].  It is also desirable that each node should not have to record the provenance of 
every piece of information generated by any sensor.  For tree connected communication networks the solution 
to this problem is the Channel filter [16].  The Channel filter is a probability distribution conditioned on the 
common information held between a pair of nodes.  When Channel filters are used to identify redundant 
information, only posterior distributions need to be transmitted between nodes.  This allows the computation 
of the global posterior without sending measurements or provenance information. 

                                                      
1  Sections 2 and 3 are provided by BAE Systems - Advanced Technology Centre. 
2  Sections 4 and 5 are provided by BAE Systems - Advanced Systems & Technology. 
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If nodes a and b communicate their information, the updated estimate can be calculated as the product of their 
distributions divided by the common information [12]. 
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When the underlying distributions are Gaussian, the channel filter is also an Information filter.  Importantly, 
since information is additive, redundant information can be removed by subtraction.  A discrete time model of 
a linear system xk = [x1, x2,…,xn], xi∈ℜ,  is given by (2.1.4). 
 
          (2.1.4) kkkkk wGxFx += −1
           (2.1.5) kkkk vxHz +=
 
where Fk is the state transition model; Gk projects the noise vector into the state, and wk is a zero-mean, white 
noise vector with covariance Qk.  An observation of the state is made according to (2.1.5) where vk is a zero 
mean white noise vector with covariance Rk. 
 
For such a system the Kalman filter produces an optimal estimate  of the true state x(k) and an 
associated covariance P(k | k) = E[( - x(k))′( ) - x(k))] using the measurement set Z

)|( kkx̂
)|( kkx̂ |( kkx̂ k.  The Kalman 

filter equations can be written in information form by introducing the identities (2.1.6) for the information 
vector and information matrix respectively. 
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The Kalman filter update in information space is a simple addition of the predicted information matrices and 
vectors and the measurement written in information form (2.1.7), (2.1.8).  The predicted densities can be 
calculated by converting the predicted state space (2.1.9) estimate to information space. 
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The track-to-track update can now be written as the sum of information vectors and matrices, minus the 
channel filter (2.1.10). 
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The channel filter is then updated to account for the new common information (2.1.11). 
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Unfortunately, the channel filter can only be used in single connected networks.  For arbitrary networks the 
Covariance Intersection (CI) algorithm can be used [17].  The CI algorithm is a convex combination of the 
information vectors and matrices. 
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where ω∈[0,1] is a free parameter to be optimised, typically to maximise the determinant of the resultant 
information matrix.  The CI algorithm gives an estimate that is guaranteed to be consistent in the sense that 
the covariance is greater than the expected error.  CI thus gains additional flexibility at the expense of 
optimality. 
 

3.0 LINEAR DDF – FIELDED PERFORMANCE RESULTS 

3.1 DDF Software Development Kit 
The operations of a Decentralised Data Fusion (DDF) node, those of predict, update, communicate and 
assimilate, are independent of the underlying representation of the probability distribution.  To facilitate the 
development and demonstration of novel DDF techniques, BAE Systems ATC has exploited this 
independence and developed a DDF Software Development Kit (SDK).  Illustrated in Figure 1, the DDF SDK 
provides an overall DDF architecture with configuration, sensor and communication layer interfaces and 
support functions in an object-orientated framework written in C++. Initially the SDK utilised 
Kalman/Information filters, however the software has been written in a sufficiently general manner that any 
suitable representation such as particles [12] or mixtures of Gaussians [10] can be added. 
 

3.2 Closed loop control 
The DDF Software Development Kit (SDK) has been used by BAE Systems ATC to develop a real time 
closed loop sensor-to-actor control demonstration.  The system integrates ATC CCTV cameras (Figure 2a), 
Robovolc mobile robotic capability (Figure 2b) and Unattended Ground Sensors (UGS) (Figure 2c).  The 
scenarios considered were used to demonstrate the advantages of DDF within a heterogeneous sensor network 
in an end-to-end system that encompassed all sections of the OODA loop (Observe, Orient, Decide, and Act). 
The actuator was the Robovolc robot, the decision was which target(s) to intercept and when, and the orient 
stage involved both the physical orientation of the robot, and the sensor-to-target allocation for steer-able 
sensors. 
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Figure 1: DDF SDK is a data-fusion software architecture 

    

                          a                                                              b                                                                       c 

Figure 2: CCTV Camera (a), Robovolc (b), UGS (c) 

The scenarios were representative of a number of military scenarios including UAV reconnaissance/ 
surveillance, anti-submarine warfare, urban asymmetrical warfare and mine counter measures.  Figure 3a 
shows the experimental set-up.  In the scenarios, pedestrians in the 9K car park give rise to tracks in the 
Common Operating Picture (COP).  Robovolc, accessing a single DDF node associated with a CCTV camera 
(marked in orange in Figure 3a), defends a ‘sensitive’ region of the car park against intrusion (e.g. red area in 
Figure 3a).  Robovolc defends a region from intrusion by physically interposing itself in the path of targets 
that appear to threaten the region.  Once a pedestrian has been intercepted, Robovolc then returns to guarding 
the region.  Robovolc moves to interception points supplied to it by software that sits between DDF and 
Robovolc (Figure 3b).  This software analyses the DDF tracks and instructs Robovolc accordingly.  The 
instruction to move is triggered by a target crossing an outer boundary shown in green in Figure 3a. 
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                                           a                                                                                                 b 

Figure 3: Operational Setup (a), Software Architecture (b) 

The UGS sensor (Figure 2c) was able to detect targets using its ultrasound tripwire while running the SDK 
DDF software at an acceptable rate indicating its ability to participate in a network as a full DDF sensor node. 
 
In addition to the DDF tracking, sensor management was implemented across the network.  Multi-sensor 
management using Decentralised Decision Making (DDM) algorithms was implemented across two steer-able 
sensors to provide a globally optimal sensor to target allocation.  The manageable sensor was mimicked in 
software by only processing a subset of the cameras’ Field Of View (FOV).  This resulted in a narrower but 
steered FOV.  The sensor management software controls the pointing of these software-steered cameras with 
a view to optimising the ability of Robovolc to defend the area.  The results are drawn from analysis of the 
data collected during two experimentation periods, one for each implementation.  The measures of 
effectiveness are drawn from the SIAP measures [18].  The relevant SIAP measure is completeness, and the 
relevant system metric is the number of successful (timely) intercepts.  Figure 4 illustrates two still images 
from the demonstration video.  In the upper right and left corners, the steerable camera FOVs are shown as 
light grey squares.  The lower left corner illustrates a plan view showing the tracked target means and 
covariances. 
 

          
Figure 4: The UGS was used as a trip wire to cue the CCTV FOV; the latter are the light grey squares 
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4.0 PROBABILISTIC DECENTRALIZED DATA FUSION 

When applying linear decentralized data fusion to the problem of target tracking, a common 
observability/fusion platform in position space is typically required by all sensors in the network – whether it 
be in a spherical or Cartesian coordinate system.  However, when multi-source sensors operating in disparate 
observability/fusion spaces are used to populate a network, a common platform for fusion no longer exists, 
and the linear decentralized data fusion algorithms must be abandoned for a more generalized estimation 
approach. 
 
A generalized, probabilistic approach to performing multi-source data fusion and target tracking in 
decentralized sensor networks is illustrated in Figure 5.  The proposed architecture provides the ability to 
seamlessly integrate and efficiently fuse multi-source sensor data in the absence of any linearity and/or 
normality constraints.  In addition, the architecture is fully decentralized and provides a methodology that 
scales extremely well to any growth in the number of targets or region of coverage.  The primary components 
of the described architecture are discussed in detail in the subsequent sections. 
 
 Sensor 1 Processing 
 Local Posterior Processing

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Probabilistic Decentralized Data Fusion Architecture 

4.1 Particle Filters 
The decentralized probabilistic approach outlined in Figure 5 utilizes particle filters to estimate the local 
posterior densities for each sensor.  As described in the seminal paper by Gordon et al. [19] along with others 
[14,20], particle filters are based upon point mass representations of probability densities which can be 
applied to any state-space model in the absence of linearity and/or normality constraints.  In the same way that 
a Kalman filter provides the optimal Bayesian estimate for the highly-restricted linear, Gaussian environment, 
a particle filter can be thought of as approximating the optimal Bayesian recursion without having to impose 
any linear model or noise distribution constraints. 
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The basic idea behind the particle filter is that the posterior density of interest is represented by a set of 
weighted particles, each of which forms an independent hypothesis for the state at a given time.  If the weights 
are chosen correctly, this weighted set of particles becomes representative of the true posterior density in that 
expectations of the true posterior can be made arbitrarily close to the equivalent expectations of the set of 
weighted particles. 
 
In order to describe its operation, assume that a particle set of size N is being used to approximate the 
posterior density of a state vector, xk, based upon the set of all available measurements Zk={zj, j=1,2,...,k}.  At 
iteration k−1, the posterior density, p(xk-1|Zk-1), is represented by a set of particle values (x1

k-1,x2
k-1,...,xN

k-1) and 
associated weights (w1

k-1,w2
k-1,...,wN

k-1).  At the next iteration, a new set of particle values (x1
k,x2

k,...,xN
k) and 

associated weights (w1
k,w2

k,...,wN
k) which characterize the posterior density, p(xk|Zk), can be determined as 

follows: 
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where p(xk|xi

k-1) is the transition density and p(zk|xi
k) is the likelihood function.  Comparing (4.1.2) with (2.1.1) 

it can be seen that for a given particle, 
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As a result, from (2.1.1), (4.1.3) and (4.1.4), it is observed that the weights of a particle filter represent the 
prior and posterior densities corresponding to each particle’s estimate of the state vector.  Consequently, an 
overall estimate for the true posterior density can be theoretically obtained from the particle ensemble. 
 

4.2 Estimating Local Posteriors 
In this work, range-only, bearing-only and range/bearing sensors are evaluated for multi-source, decentralized 
data fusion in which particle filters are used to estimate the local posteriors in range/bearing space for all 
sensor types.  The measurement vector, measurement covariance and particle filter state vector used for all 
sensor types are defined as 
 

][ θ ′= k,k,rk z,zz ,     ,     )( 22
θ,kr,k zzk ,σσdiagR = ]θθ[ ′= kkkkk ,r,,rx .  (4.2.1) 

 
Using (4.2.1), a generalized likelihood function can be defined as the product of the individual range/bearing 
likelihoods for a given sensor type as follows: 

1. Range-Only Sensor - )()σ()()()( 2
θ maxminzk,rkk,kk,rkk ,θθU,zNx|zpx|zpx|zp

k,r
==  

2. Bearing-Only Sensor - )σ()()()()( 2
,θθ θ k,zkmaxminkk,kk,rkk ,zN,rrUx|zpx|zpx|zp ==  (4.2.2) 
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3. Range/Bearing Sensor - )σ()σ()()()( 2
,θ

2
,θ θ k,k,r zkzkrkk,kk,rkk ,zN,zNx|zpx|zpx|zp ==  

where  corresponds to a normal distribution with mean z and variance σ)( 2σ,zN 2, and  
corresponds to a uniform distribution over the region α

)( maxmin ,ααU
min to αmax. 

 
The generalized transition density used for this work is based on a zero-mean, first-order Markov model [21] 
and is defined by the following state transition matrix and process noise covariance 
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where τr, τθ, σr, and σθ are tunable parameters related to the expected target motion in range/bearing space - 
each of which can assume different values depending upon the amount and type of fusion which has occurred 
for a specific posterior. 
  
Applying the generalized likelihood function and transition density defined in (4.2.2) and (4.2.3) to (4.1.1) 
and (4.1.2), the particle filter is observed to provide a consistent method of local posterior estimation for the 
multi-source sensor types evaluated in this work. 
 

4.3 Parameterizing Local Posteriors 
Communication of information is paramount for any form of distributed data fusion.  Consequently, a 
fundamental requirement for decentralized fusion is efficient scaling of communicated information relative to 
any growth in the number of targets or region of coverage.  To date, the majority of methods investigated for 
communicating information in decentralized architectures have been focused on particle set optimization 
[7,8], Gaussian mixture models or Parzen density estimators [9,10] or some combination of the two 
[11,12,13].  All of these methods, however, are prone to scalability concerns as the number of particles, GMM 
components or Parzen components required to adequately estimate and/or reconstruct posteriors of interest 
necessitate considerable increase as the number of targets or region of coverage escalate.  Our solution to this 
scalability concern is rooted in high-order statistics and the generalized lambda distribution (GLD) - a four-
parameter probability distribution whose density function can assume a wide variety of uni-modal, symmetric 
and/or asymmetric shapes [22,23]3. 
 

                                                      
3  The uni-modal limitation of the generalized lambda distribution prevents true, decentralized multi-modal estimation.  However, for 

applications such as target tracking where a uni-modal assumption for the marginal distributions of interest may not be too 
erroneous, the generalized lambda distribution provides an intermediate solution to the decentralized scalability concern until a 
comparable multi-modal version can be developed. 
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Derived from Tukey’s original lambda distribution defined by the quantile function 
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for 0 ≤ u ≤ 1 [24], the generalized lambda distribution parameterizes (4.3.1) as follows 
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where λ1 acts as a location parameter, λ2 acts as a scale parameter, and the combination of λ3 and λ4 jointly 
capture the shape of the empirical distribution. 
 
In order to describe a probability distribution using the generalized lambda distribution, the λ-parameters are 
typically matched to the first four moments of a desired data distribution using a methodology similar to the 
one outlined in [22].  Figure 6 illustrates the ability of the generalized lambda distribution to accurately 
estimate various uni-modal data distributions.  The first four moments of the original data distribution and 
those of the GLD distribution are annotated on each plot.  From Figure 6, the mean percent moment error is 
observed to be less than 1% for all GLD estimated distributions. 

         
          

 
                          Uniform (100,200) 

 
                                  Beta (10,1)                                                                        Gamma (5,10) 

Figure 6: GLD Estimation of Various Uni-Modal Distributions 

                              Normal (100,20)                            
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Table 1 – taken from [11,12] and slightly m
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⎠
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⎛
=

tionRepresentaPosterior  Accurate
Components Required

Component
(floats)Bandwidth  Required

(floats)Bandwidth  Available
edCommunicat Accurately Posteriors ofNumber . 

 
From Table 1 it can be seen that the generalized lambda distribution provides a significantly more compact 
method of posterior representation as compared to all the other methods considered. 
 

Table 1: Bandwidth Requirements 

Representation Di

mber of 
steriors 

Accurately mension Bandwidth  Bandwidth 
(floats) per per Accurate Posterior 

Available Required Required Components Nu
Po

(floats) Component Representation Communicated 
Particle 4 500 1 2000 0 
GMM 4 500 14 20 1 
Parzen 4 500 5 50 2 
GLD 4 500 1 16 31 

Particle 6 500 1 2000 0 
GMM 6 500 27 20 0 
Parzen 6 500 7 50 1 
GLD 6 500 1 24 20 

 

.4 Reconstructing Local Posteriors 4
One advantage of using a quantile function like (4.3.2) to describe a distribution lies in its ability to efficientl
generate random variates.  For instance, if Q is the quantile function for a specific probability distribution, 
then through the use of the inverse transformation method, 

y 

 
(0,1),)( ∈= u,uQX          (4.4.1) 
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random variates, X, with quantile function, Q, can be generated with little effort.  Consequently, since sources 
of uniform random variates over the i  (4.4.1) provides an efficient method 
for generating random variates from distributions w e known and computationally 
tractable.   As a result, and as demonstra  Fig  pr ent 
and ac ru a c d netwo t of GLD 
param
 

4.5 Estimating Global 
After the local posteriors have been ameterize communicated and reconstructed at any receiving 
sensor(s), the number of targets and corresponding sitions are esti using an iterati probabilistic 
approach.  A at a given sensor are then ssociated with the estimated target information, and 
corresponding global poste rs are det  fusing the associated local posteriors via m ltiplication of 
their joint ility densi s. 
 
Joint prob  densities are typicall imated u g histogram m ds, however, suc ethods often 

troduce undesirable “artifact patterns” which hamper the global fusion process by introducing local extrema 
nd obscuring the true global optimum [25].  Furthermore, these artifacts can be amplified when the data is 

cle filter applications.  In an attempt to avoid such artifacts, 
, however, such methods do not always remove the initial 

PVE was originally developed for medical and remote sensing image registration applications [25,26,27].  
The problem of estimating the joint 
rovides a slight alteration to the image registration problem.  Consequently, in order to apply the basic GPVE 

on of estimating joint histograms from 1-D data sequences, the original GPVE 
histogram estimation procedure outlined in [25,26,27] needs to be reformulated using the following mapping: 
 

       (4.5.1) 

 
where X is the discrete domain of the data sequence X* and Y is the discrete domain of the data sequence Y*.  
In addition, the values X*(x) and Y*(y) represent the actual data values of the two data sequences at the 
corresponding indices x=xi, y=yj in terms of the sample spacing.  Defining a real-valued kernel satisfying the 
constraints 
 

        (4.5.2) 

 
where n  and Z is the set of all integers, for each x

nterval (0,1) are readily available,
hose quantile functions ar

ted in ure 6, this
ommunicate

operty coupled with (4.3.2) allows for effici
curate reconst
eters. 

ction of loc l posteriors  throughout a sensor rk via a se

Posteriors 
 par d, 

po mated ve, 
ll posteriors  a

rio ermined by u
probab tie

ability y est sin etho h m
in
a
sparsely distributed as is often the case for parti
interpolation based methods are commonly used
artifacts of the histogram and frequently introduce new ones.  Our solution to minimizing histogram-based 
artifacts is based on an approximation technique referred to as generalized partial volume estimation (GPVE). 
 
G

probability density of two uni-dimensional data sequences, however, 
p
principles to the applicati

Y,Y:Y

X,X:X
**
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∈Z i∈X, yj∈Y, the joint histogram of X* and Y* can be 
updated in the following manner: 
 

. (4.5.3) Zq,pqfpfqyY,pxXhqyY,pxXh *Y*Xj
*

i
*

j
*

i
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From (4.5.3) it can be seen that the increment of the joint histogram is represented in terms of the kernel 
functions corresponding to each data sequence.  Furthermore, the first constraint in (4.5.2) ensures that the 
increments are non-negative while the second constraint in (4.5.2) ensures that the sum of the updated 
amounts are normalized to one for each corresponding pair of indices xi in X* and yj in Y*. 
 
The appropriate selection of a suitable kernel for use in (4.5.3) can depend on many factors, some of which 

 sparseness of the data in X* relative to Y*.  Figure 7 illustrates 
hich satisfy (4.5.2). 

may be the histogram grid parameters or the
various kernels of the form f ~ N(0,σ2), all of w
 

N(0,1)

             
Figure 7: Various GPVE Kernels 

Figure 8 illustrates a range-only particle distribution with standard, cubic-interpolated and GPVE histogram 
stimation – all independently normalized.  From this figure it can be seen that the standard histogram e

generates a significant amount of distortion in the estimated distribution due to the sparseness of the particle 
data.  Consequently, a poor representation for the range-only particle distribution results.  The interpolated 
histogram minimizes some of the distortion observed in the standard approach, however, a substantial amount 
of distortion still remains.  Finally, the GPVE histogram is observed to accurately reflect the true distribution 
of the range-only particle distribution. 

 
Figure 8: Joint Histogram Estimation of Range-Only Particle Distribution 
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5.0 PROBABILISTIC DDF – SIMULATED PERFORMANCE RESULTS 

imated using 2000 
articles.   The sensor likelihood parameters used in (4.2.2) are given as follows: 

max

min
θ
θ

2. Bearing-Only Sensor 

 

 
Figure 9: Simulation Scenario 

Figure 10 illustrates snapshots of local posterior (top row) and global posterior (bottom row) particle 
distributions – color-coded relative to a specific sensor - for no fusion, 3 fusions, 6 fusions and 10 fusions.  
From this figure it can be seen that the fused global posteriors for all sensors quickly collapse to the associated 
target of interest. 
 

Figure 9 illustrates the target path and sensor configuration for a simulated scenario consisting of two targets, 
three range-only sensors and one bearing-only sensor.  In this simulation, each target traverses around the 
target path counter-clockwise one complete revolution.  All local posteriors are est
p
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Figure 11 illustrates the norm of the p an of the corresponding 
associat sting to observe that certain 
regions exist where the sensor m  (i.e., approximately 60, 
130, 300 and  either adding 
more sensors, reconfiguri or placement.  Regardless, from 
Figures 10 and 11 it  in this work is capable of 
accurately and efficie sing multi-source sensor data in non-linear/non-Gaussian environments. 

Figure 10: Particle Distribution Snapshots 

osition error between each target and the me
ed particle set at the bearing-only sensor4.  From Figure 11 it is intere

odalities are not as complementary as other regions
 390 seconds).  These regions of concern can be compensated for, however, by
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 can be seen that the probabilistic architecture outlined
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Figure 11: Position Error 

                                                      
4 The error statistics for the range-only sensors are nearly identical to the error statistics of the bearing-only sensor illustrated in 

Figure 11. 
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6.0 SUMMARY AND FUTURE WORK 

A highly-scalable, Bayesian approach to the problem of performing multi-source data fusion and target 
tracking in decentralized sensor networks has been presented.  The proposed probabilistic approach provides 
full decentralization; seamless integration and efficient fusion of multi-source sensor data, and an 
unprecedented scaling capability.  Two primary limitations of the proposed architecture, however, lie in its 
current inability to parameterize multi-modal distributions for information communication and its lack of a 
method for handling common information during fusion.  In order to maintain efficient scalability, it is 
believed that methods of density parameterization and fusion should continue to be rooted in techni ues 
utilizing high-order statistics.  Consequently, a possible solution for parameterizing multi-modal distribu ons 
via high-order statistics could be found through quantile or copula mixtures.  In addition, a possible solution 
for removing common information during fusion could also be found through a quantile or copula based 
method approaching a similar technique as outlined in [12]. 
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